Elements and Industry: The Chemical Revolution in the White Lead Industry (And the Cold Shower of Practice)

> Ernst Homburg 23 May 2013 Department of History, Maastricht

Modern notion of element

- (a) Distinct kinds of atoms (specific number of protons)
- (b) Specific atomic weight (but: isotopes)
- (c) Atoms not destructable by chemical means

With hindsight this notion mainly goes back to:

- Lavoisier (1789): 'elements' are the ultimate remaining bodies of analytical decomposition;
- Dalton (1800): atomic theory: symbols for chemical elements

Gradual evolution for over more than a century

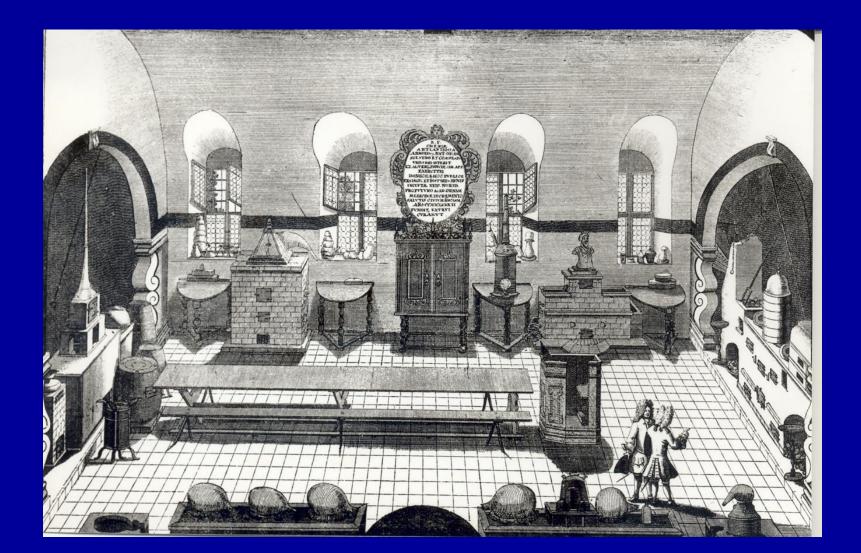
Early 17th century

- Aristotle's elements: earth, water, air, fire
- Paracelcus' principles: mercury, sulfur, salt
- Ca. 1700
- Joachim Becher and Georg Ernst Stahl: phlogiston theory, combining in a way the elements and principles
 18th century
- Increased understanding of double decomposition: AB + CD => AC + BD [Ba(OH)2 + K2SO4 => BaSO4 + 2KOH]

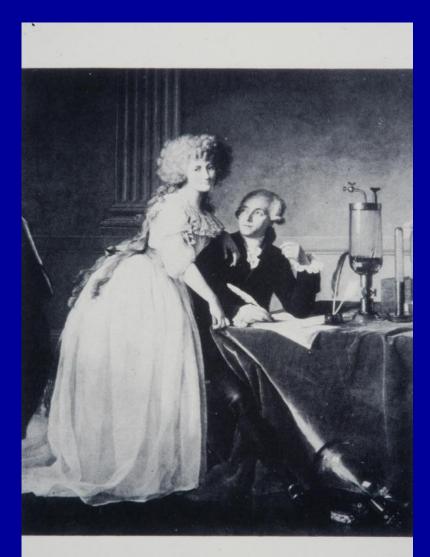
Etienne Geoffroy's affinity table (1718) summarized reactivity

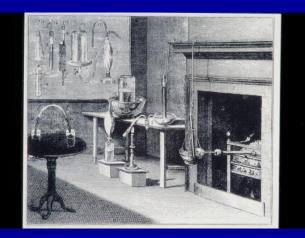
	Schematis Elementaris Affinitatum & Combinationum Chemicarum TABULA SEX TA									
5	ž				Lubítia Vitrea		encault.		A.	
Ę	3	H dulcrs *calomel	lublia Vitrea	cryffalli artif. Ipecies	calx th	fritta opt ftras cryftal art	calc. metal coloratæ	en caulta colorata	metallica	calc.met.col. colores fufibiles
Ą	Ŕ	fal alem= = broth	calces metallica	vitravar. alb. et colorata	Øv	vitrum coe	pracip O caMi	en caultum rubeum pulcherr.	calces metallica	metalla et femi.metal.
of	fo	lolutio Q in oso	00	 0-0:lis	calces Lef O	rubinus artif.	calx. cobalti	encaultum caruleum	<~~>	20
7	7	lolutio	Ţ		calces Riet D	topal ius artif.	viride Q	encaultum viride	+A+	Å
V	SV	folutio Unin Tr	0°0	Ø boraceus	calx 52 et viride Q	lmaragdut artif,	calx. O	encaultum Fulco = rubrum	<∩→ et ∇	A volatile
					calces Fetcobalt	låphyrus artif	calc.metal combinat		40.	A aer varius ut Aix
					calces cobalti et O	amethyltes artif.	⊙etcabx cobalti	lípec lap. lazulí art.	() 1 &a	
					calces Hz et O	Hyacínth artif.	porcelana minus alba	incrustatio alba porcelanæ	$\nabla \nabla_{e^{\dagger}}$	000
					calces Thet 2	opalum encaultum album	vafa figulina	incrultatio val. figul. fayence	Vegetabile	\$-
					kaolin gyplium	porcelana porcelana reaumur	0	incrultatio O	lubitia incognita	lp. rectores
					argilla cois	vala figu: : lina lonora	Ģ	incrultatio Q	Øv	erolinente
					\odot	cryffallus incruft.per O			A.	A of phogisti catus
			İ		⊙et calc. coloratæ	aventuri = = na var. color.				

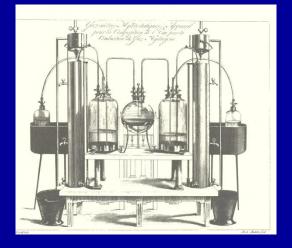
Double decomposition

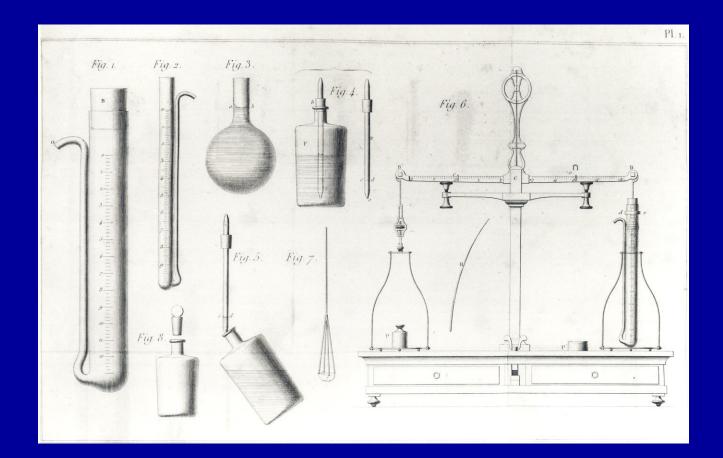

- AB + CD => AD + BD
- A, B, C, D are outcomes of chemical analysis; but whether they are truly 'elemental' in the modern sense is not immediately clear
- Also Lavoisier's definition does not offer a solution.
 Examples: Cl seen as an oxygen compound; or CN as an element.
- See: F.L. Holmes, *Eighteenth-Century Chemistry as an Investigative Enterprise* (Berkeley, 1989).

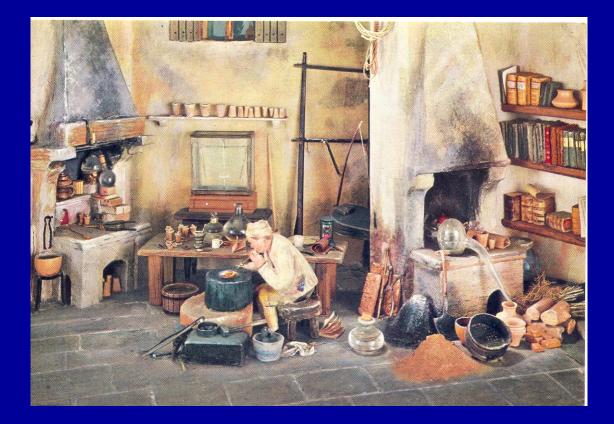
Chemical Revolution (late 18th C)


• Narrow sense:


- Replacement phlogiston theory by Lavoisier's chemistry
- Based on quantitative methods
- And binary, systematic nomenclature
- Broader sense (the above +):
- Improved knowledge of double decomposition
- Introduction of new analytical techniques (reagents; volumetrics; gas chemistry
- 'Revolution' of the chemical laboratory
- Paleotechnic revolution in the chemical industry (from wood to coal; from organic feedstocks to minerals)

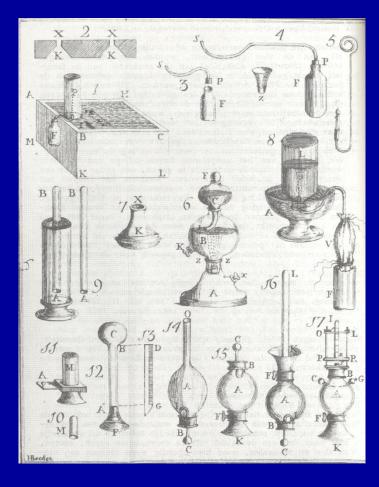

'Old laboratory': University of Altdorf: teaching the 'fire art' (1680) N.B. 'industrial workshops' were quite similar

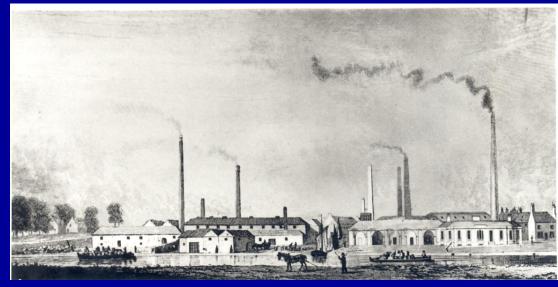

Manipulation of gases: Priestley 1774; Van Marum 1790; Mr. & Mrs. Lavoisier 1790



Volumetric methods (Descroizilles; Gay Lussac)

Use of the blow-pipe by Cronstedt (1757) and reagents by Bergman (c1770)

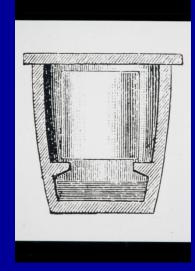

'New laboratory' Uni Giessen (1842)



1770-1830

- (a) scaling-up of industry
- (b) scaling-down of laboratory practices
- Result: the united material culture between chemistry and industry breaks down.
- But: introduction of new chemical theories in industry

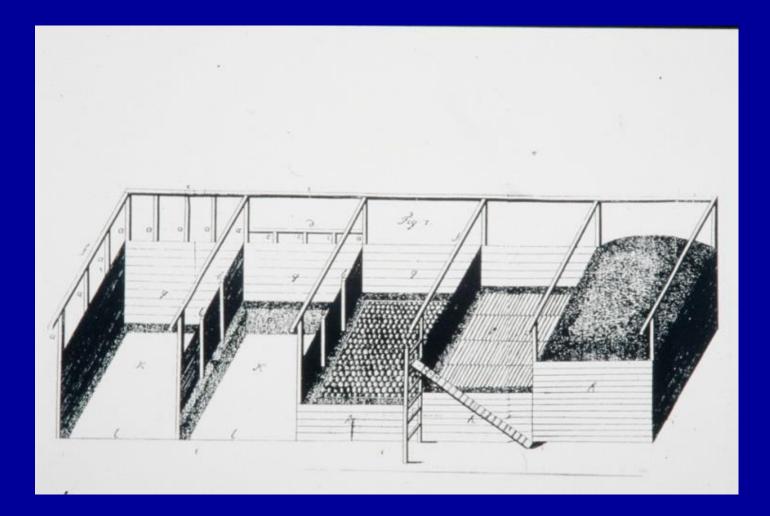
(2) 1770-1830

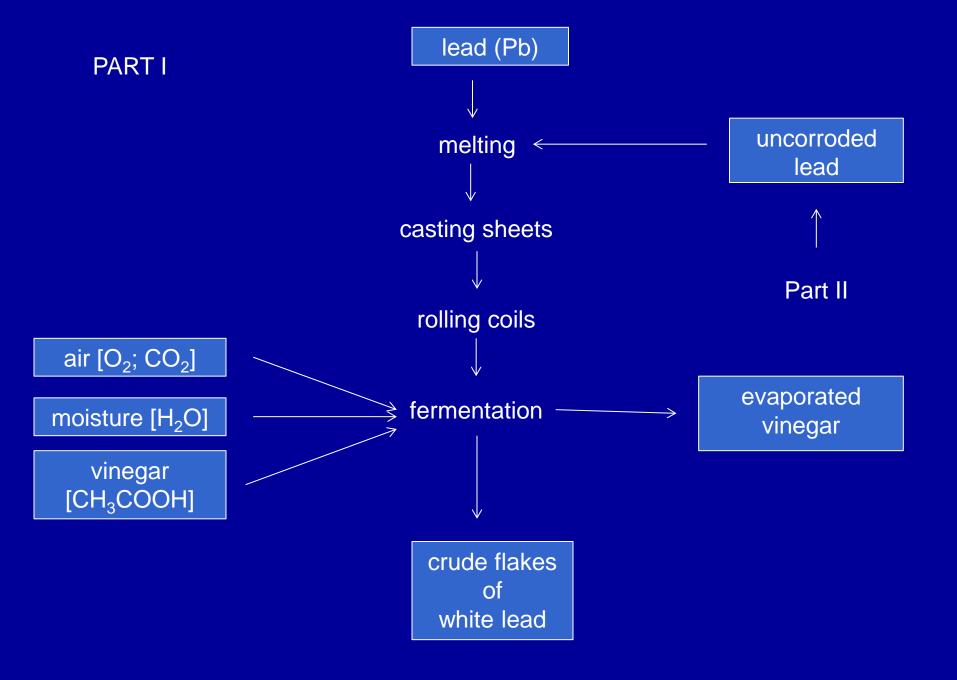


Example: White lead

- White lead is basic lead carbonate, approximately 2 PbCO₃.Pb(OH)₂, but in practice with quite some variation in composition, and in several crystal modifications.
- A crucial pigment used by the great painters of the 17th century (Rembrandt, etc.); but also very common in painting of ships, wooden houses, etc. Very good covering power.
- 'Dutch process', developed in the 16th century dominated the European industry. Virtual monopoly of the Netherlands; but some competition from Britain since the 17th C, and Germany, Austria and later France since the 18th C.

White lead (ceruse)


- Lead sheets are rolled into coils
- Placed in pots over vinegar
- Convered by sheets of lead
- The pots placed in stacks, in beds of horse dung
- Ca. 700 pots in one layer
- Several thousands of pots in one stack
- Horse dungs starts fermenting
- Temperature in the stack may rise to 70 centigrade
- After 6-10 weeks the sheets are totally corroded, and the stack is dismantled.



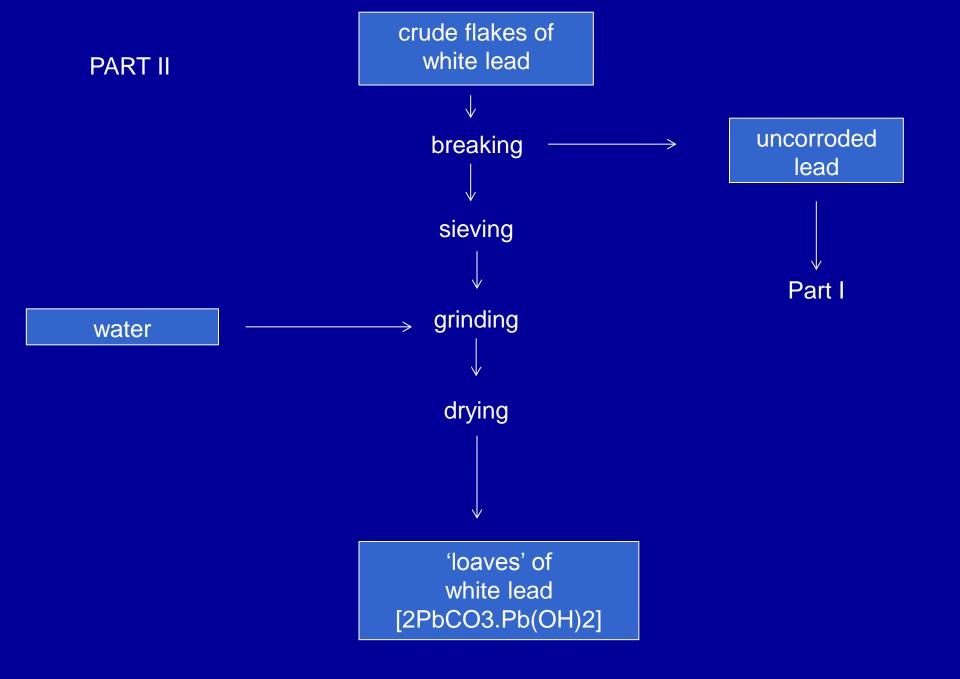
Figuur 1: Loodwitpot en opslag potten en mest

Construction of a stack

Traditional chemical understanding of the process

• According to the ideas of Stahl:

lead + vinegar => 'calx of lead' + 'phlogistinated vinegar'


(i.e. corrosion of lead with the help of acids, in particular vinegar)

'Refining' the crude white lead flakes

- Separation of white lead from uncorroded lead by breaking, sieving and grinding
- Very toxic: high mortality rates among the white lead workers
- Organic inputs: vinegar and horse dung; and wind power

Impact of the 'chemical revolution' on the white lead industry

- research on gases the composition of air
- 1756 Joseph Black discovers 'fixed air' (CO2)
- 1773 Torbern Bergman publishes on the 'Acid of Air' (CO2), and discovers that white lead is compound of Acid of Air (CO2) and litharge (PbO)
- Later investigators in the 18th C concluded that white lead is 84% PbO and 16% CO2

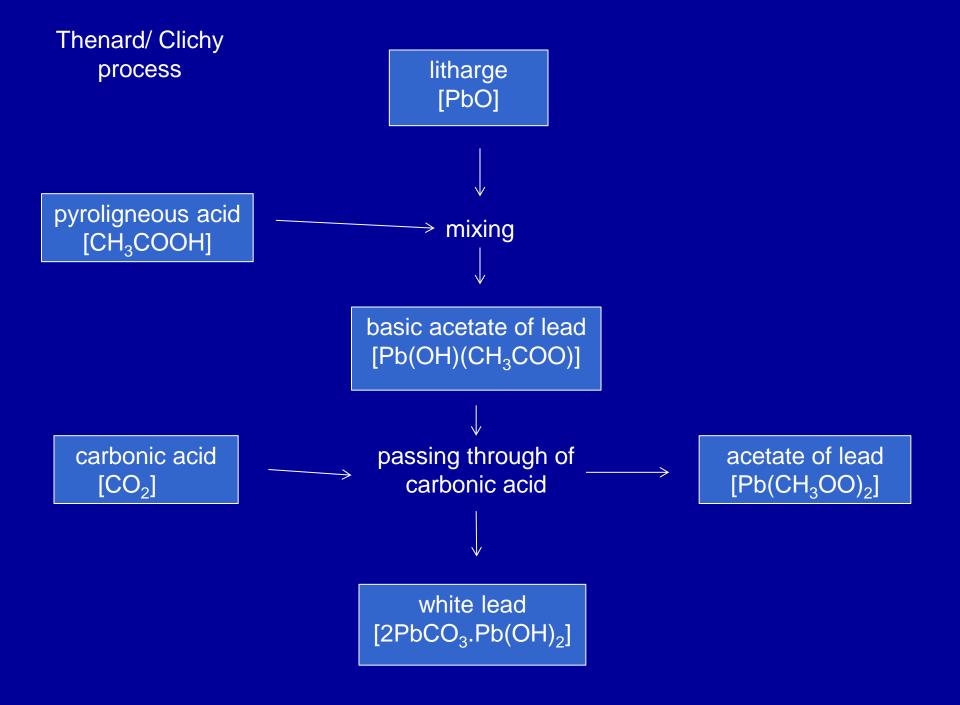
Total reinterpretation of white lead making

- Horse dung = not only a source of heat, but also of CO2
- Oxygen supply is important
- There is no acetate in the final product, so white lead can also be produced without the use of vinegar (= catalyst)
- Most radical: it can be made by double decomposition of any basic carbonate with any soluble salt of lead

So: modern chemistry destroys all restrictions of the old Dutch process

Improvements in the process

- Old Dutch process > New Dutch process, by improving oxygen supply (19th C)
- 1792 Von Herbert in Austria constructs a plant without horse dung: Chamber process = heated chambers + CO2 supply by fermentation of wine lees (and later external supply)
- From 1780 onwards totally new 'chemical' processes via double decomposition; first as 'by-product' of soda ash production

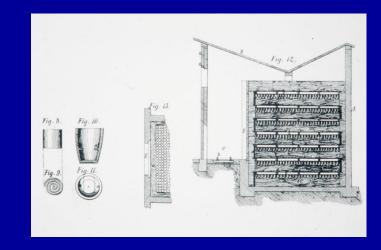

New 'chemical' processes

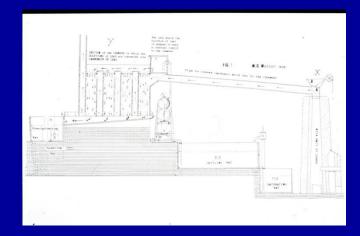
- c.1770 Carl Wilhelm Scheele (1742-1786) suggests to produce mineral alkali (soda) from sea salt, with the help of litharge (PbO)
- 1781 James Turner files a patent for the production of a yellow pigment (Turner's yellow), mineral alkali and white lead from sea salt and litharge (yellow via heating of Pb-salts, because mostly PbCl2 was the product)

 $[2 \text{ NaCl} + 3 \text{ PbO} + 3 \text{ CO}_2 => \text{Na}_2\text{CO}_3 + 2 \text{ PbCO}_3.\text{Pb}(\text{OH})_2 + 2 \text{ HCl}]$

Three variations of the Turner process used in industrial practice:

- Chaptal (c1800): PbCl2 + H2SO4 + carbonate (2-steps) > white lead
- Keir (1806): PbCl2 + alkali + CO2 > white lead
- Cochrane/Dundonald (1796): change process conditions > white lead




Technological competition: tradition vs. chemistry

- After ca. 1800 many new chemical processes were developed.
- In Netherlands between 1834 and 1867 at least 17 patents + several new factories
- They all failed, just like the new plants in France
- Main problem: coverage by the synthetic lead was less good
- Later understood as too small crystallites
- Also high energy costs: coal for steam engines and CO2 production.

White lead

- Improvement of classical method (CO2 supply)
- Completely new synthetic methods
- Last ones failed because of lower product quality (crystal size)

Conclusions

- 'Chemical revolution' (in the broad sense) completely changed the horizon of the chemical industry by offering many different options.
- Understanding chemical reactions in term of 'elements' or, broader defined, 'constituents', 'components', 'aggregates' was a crucial step.
- But chemistry does not determine everything; 'physics' (e.g. crystal size) is very important as well. White lead = performance product